skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "LeGrow, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ability of a linear error-correcting code to recover erasures is connected to influences of particular monotone Boolean functions. These functions provide insight into the role that particular coordinates play in a code’s erasure repair capability. We consider directly the influences of coordinates of a code. We describe a family of codes, called codes with minimum disjoint support, for which all influences may be determined. As a consequence, we find influences of repetition codes and certain distinct weight codes. Computing influences is typically circumvented by appealing to the transitivity of the automorphism group of the code. Some of the codes considered here fail to meet the transitivity conditions required for these standard approaches, yet we can compute them directly. 
    more » « less
  2. We present new results and speedups for the large-degree isogeny computations within the extended supersingular isogeny Diffie-Hellman (eSIDH) key agreement framework. As proposed by Cervantes-Vázquez, Ochoa-Jiménez, and Rodríguez-Henríquez, eSIDH is an extension to SIDH and fourth round NIST post-quantum cryptographic standardization candidate SIKE. By utilizing multiprime large-degree isogenies, eSIDH and eSIKE are faster than the standard SIDH/SIKE and amenable to parallelization techniques that can noticeably increase their speed with multiple cores. Here, we investigate the use of multiprime isogeny strategies to speed up eSIDH and eSIKE in serial implementations. These strategies have been investigated for other isogeny schemes such as CSIDH. We apply them to the eSIDH/eSIKE scenario to speed up the multiprime strategy by about 10%. When applied to eSIDH, we achieve a 7–8% speedup for Bob’s shared key agreement operation. When applied to eSIKE, we achieve a 3–4% speedup for key decapsulation. Historically, SIDH and SIKE have been considerably slower than its competitors in the NIST PQC standardization process. These results continue to highlight the various speedups achievable with the eSIKE framework to alleviate these speed concerns. Though eSIDH and eSIKE are susceptible to the recent devastating attacks on SIKE, our analysis applies to smooth degree isogeny computations in general, and isogeny-based signature schemes which use isogenies of smooth (not necessarily powersmooth) degree. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)